C(2)	0.707 (1)	0.00((1))	0.101.(1)	66(2)
C(2)	0.797(1)	0.006(1)	0.181 (1)	0.0(3)
C(3)	0.3423 (9)	-0.174 (1)	0.2157 (9)	5.0 (2)
C(4)	0.3748 (7)	-0.237(1)	0.0862 (9)	4.5 (2)
C(5)	0.6217 (8)	-0.286(1)	0.0634 (9)	4.4 (2)
C(6)	0.7727 (8)	-0.281(1)	0.0226 (9)	4.7 (2)
C(7)	0.8737 (9)	-0.358 (1)	0.059(1)	5.2 (2)
C(8)	1.007 (1)	-0.320(1)	0.002 (2)	5.8 (2)
C(9)	0 9779 (9)	-0.228(2)	-0.077(1)	56(2)

Table 2. Selected geometric parameters (Å, °)

Cd—Cl	2.533 (3)	Cd-N(1)	2.458 (9)
Cd—N(2)	2.45 (1)	C(1) - N(1)	1.50 (2)
$C(1) - C(1^{i})$	1.55 (2)	N(1) - C(2)	1.44 (2)
N(2) - C(4)	1.48(1)	N(2)-C(5)	1.33(1)
N(3) - C(6)	1.36 (2)	N(3)-C(9)	1.39(1)
C(3) - C(4)	1.51(1)	C(5)—C(6)	1.45(1)
C(6) - C(7)	1.35 (2)	C(7)—C(8)	1.43 (2)
C(8)—C(9)	1.35 (3)		
Cl—Cd—Cl ⁱ	95.0 (2)	C1-Cd-N(1)	95.1 (3)
$Cl-Cd-N(1^{i})$	167.8 (3)	Cl-Cd-N(2)	101.1 (1)
$Cl-Cd-N(2^i)$	92.2 (2)	$N(1)$ —Cd— $N(1^i)$	75.8 (5)
N(1) - Cd - N(2)	92.5 (3)	$N(1)$ -Cd- $N(2^{i})$	71.7 (3)
$N(2) - Cd - N(2^{i})$	160.3 (4)	$N(1) - C(1) - N(1^{i})$	112.1 (8)
C(1) - N(1) - C(2)	109(1)	C(4) - N(2) - C(5)	114(1)
C(6) - N(3) - C(9)	108 (1)	N(2) - C(4) - C(3)	108.0 (9)
N(2) - C(5) - C(6)	125(1)	N(3)-C(6)-C(5)	126(1)
N(3) - C(6) - C(7)	110.0 (9)	C(5)-C(6)-C(7)	124 (1)
C(6) - C(7) - C(8)	106 (1)	C(7) - C(8) - C(9)	108 (1)
N(3) - C(9) - C(8)	108 (1)		

Symmetry code: (i) 1 - x, -y, z.

Lp corrections were applied to intensity data. The heavy-atom method (Cd atom) followed by difference Fourier syntheses revealed the positions of all non-H atoms. The positions of the H atoms were calculated geometrically and were not refined but included in F_c calculations [C—H = 0.98 Å; B(H) = .1.3B(C)]. A full-matrix least-squares refinement was used with anisotropic thermal parameters for Cd, Cl and N atoms, isotropic for C and H. Calculations were performed on a VAXstation 3100 computer with the *SDP* programs (Frenz, 1985); molecular graphics were produced using *ORTEP* (Johnson, 1965).

Lists of structure factors, anisotropic displacement parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71503 (15 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: L11057]

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.
- Arioldi, C., de Oliveira, S., Riggiero, S. G. & Lechat, J. R. (1990). Inorg. Chim. Acta, 174, 103-108.
- Brown, J. N., Towns, R. L. & Trefonas, L. M. (1970). J. Am. Chem. Soc. 92, 7436-7440.
- Cannas, M., Marongin, G. & Saba, G. (1980). J. Chem. Soc. Dalton Trans. pp. 2090–2094.
- Castro, J. A., Romero, J., García-Vázquez, J. A., Durán, M. L., Castiñeiras, A., Sousa, A. & Fenton, D. E. (1990). J. Chem. Soc. Dalton Trans. pp. 3255-3258.
- Castro, J. A., Romero, J., García-Vázquez, J. A., Durán, M. L., Sousa, A., Castellano, E. E. & Zukerman-Schpector, J. (1992). *Polyhedron*, 11, 235-241.
- Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.

© 1994 International Union of Crystallography Printed in Great Britain all rights reserved

- Habeeb, J. J., Tuck, D. G. & Walters, F. H. (1978). J. Coord. Chem. 8, 27-33.
- Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- Nelson, S. M., Esho, F. S. & Drew, M. G. B. (1982). J. Chem. Soc. Dalton Trans. pp. 407-415.
- Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1994). C50, 371-375

A Series of Osmium Carbonyl Complexes with Related Terminal, Bridging and Capping Phosphorus Ligands

Alexander J. Blake,* E. A. V. Ebsworth,† Alan P. McIntosh and Martin Schröder

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland

(Received 1 December 1992; accepted 16 July 1993)

Abstract

The structures of a series of three triosmium carbonyl clusters containing closely related phosphorus ligands have been determined: decarbonyl-1 $\kappa^3 C$,- $2\kappa^{3}C, 3\kappa^{4}C$ -(dimethylphosphine- $1\kappa P$)- μ -hydrido- $1:2\kappa^2 H$ -hydrido- $2\kappa H$ -triangulo-triosmium(3 Os-Os), $[Os_3(CO)_{10}H(\mu_2-H)(PMe_2H)]$ (1), contains a terminal PHMe₂ ligand; decacarbonyl-1 $\kappa^{3}C$,- $2\kappa^{3}C, 3\kappa^{4}C$ -(μ -dimethylphosphino-1: $2\kappa^{2}P$)- μ -hydrido-1: $2\kappa^2 H$ -triangulo-triosmium(3 Os—Os), [Os₃- $(CO)_{10}(\mu_2-H)(\mu_2-PMe_2)$] (2), has a PMe₂ group bridging two of the osmium centres; in nonacarbonyl-1 $\kappa^3 C$, $2\kappa^3 C$, $3\kappa^3 C$ -bis- μ -hydrido-2: $3\kappa^2 H$; 1: $3\kappa^2 H$ - $(\mu_3$ -methylphosphinidene- $\kappa^3 P$)-triangulo-triosmium- $(3 \text{ Os-Os}), [Os_3(CO)_9(\mu_2-H)_2(\mu_3-PMe)] (3), \text{ the PMe}$ group caps all three metals. In (1) the terminal Os-P distance is 2.316 (18) Å and in (2) the two Os—P distances of 2.360 (4) and 2.365 (4) Å do not differ significantly. However, the μ_3 -PMe group in (3) does not cap symmetrically: at 2.350 (5) Å, one of the Os-P distances is significantly longer than the remaining two, 2.318 (5) and 2.317 (5) Å.

Comment

Many structure determinations have been reported of triosmium carbonyl clusters containing terminal phosphines but there are relatively few reports of such clusters with bridging (μ_2) PR₂ ligands

[†] Presently Vice-Chancellor, University of Durham, Old Shire Hall, Durham DH1 3HP, England.

(Huttner, Natarajan & Zsolnai, 1981; Bruce, Guss, Mason, Skelton & White, 1983; Carty, Cherkas, Nucciarone, Patel & Taylor, 1985; Day, Deeming, Doherty, Hardcastle & Minassian, 1991; Carty, Cherkas & Taylor, 1990). There is only one previous report of a capping (μ_3) PR ligand: [Os₃(CO)₉(μ_2 -H)₂(μ_3 -PPh)] (Huttner, Natarajan & Zsolnai, 1981),

which shows, as in (3), one long and two short Os—P distances. The structures of analogous ruthenium complexes containing μ_2 -PPhH and μ_3 -PPh ligands have been determined (Iwasaki, Mays, Raithby, Taylor & Wheatley, 1981). We have described the syntheses of (1), (2) and (3) previously (Ebsworth, McIntosh & Schröder, 1986) and a general route to $[Os_3(CO)_{10}(\mu_2-H)(\mu_2-PR^1R^2)]$ has been published (Colbran, Johnson, Lewis & Sorrell, 1985).

Fig. 2. A view of (2) showing the labelling of the non-H atoms. Thermal ellipsoids are drawn at the 30% probability level.

Fig. 3. A view of (3) showing the labelling of the non-H atoms. Thermal ellipsoids are drawn at the 30% probability level.

Fig. 1. A view of (1) showing the labelling of the non-H atoms. Thermal ellipsoids are drawn at the 30% probability level.

Experimental

Compound (1) was prepared as described previously (Ebsworth, McIntosh & Schröder, 1986) from the reaction of $[Os_3(CO)_{10}H_2]$ with Me₂PH in PhMe at 298 K, and was recrystallized from PhMe. Compound (2) was prepared by heating $[Os_3(H)_2(C_2H_7P)(CO)_{10}]$ (1) and was recrystallized from PhMe. Compound (3) was prepared by heating $[Os_3H(CH_3P)(CO)_{10}]$ and was recrystallized from PhMe.

Compound (1)

 $M_r = 914.7$

Crystal data [Os₃(H)₂(C₂H₇P)(CO)₁₀]

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

BLAKE, EBSWORTH, McINTOSH AND SCHRODER

Orthorhombic	Cell parameters from 14	Table 2. Ge	eometric pa	rameters (Å, °) for	(1)
$Pn2_1a$	reflections	Os(1) = Os(2)	3 012 (3)	P(1) - C(11)	1.88 (5)
a = 15.995 (5) Å	$\theta = 3 - 18^{\circ}$	Os(1) - Os(3)	2.900 (2)	P(1) - C(12)	1.75 (7)
h = 12.058 (7) Å	$\mu = 19.00 \text{ mm}^{-1}$	Os(2) - Os(3)	2.865 (2)	P(1) - C(11')	1.81 (9)
b = 12.956(7) A	$\mu = 19.00$ mm $T = 208 K$	$O_{s(1)} - P(1)$	2.316 (18)	P(1) - C(12')	1.73 (8)
c = 9./32 (4) A	1 = 290 K	Os(1) - C(1)	1.93 (5)	C(1) - O(1)	1.22 (6)
$V = 2017 \text{ A}^3$	Needle	Os(1) - C(2)	1.88 (4)	C(2)-O(2)	1.13(5)
Z = 4	$0.40 \times 0.08 \times 0.04$ mm	Os(1) - C(3)	1.93 (4)	C(3)—O(3)	1.13(5)
$D_{\rm r} = 3.012 {\rm Mg}{\rm m}^{-3}$	Dark red	Os(2)—C(4)	1.88 (5)	C(4)—O(4)	1.19(6)
		Os(2) - C(5)	1.77 (3)	C(5)—O(5)	1.20 (5)
		Os(2)C(6)	1.92 (5)	C(6)O(6)	1.19 (6)
		Os(3) - C(7)	1.89 (4)	C(7)—O(7)	1.13 (5)
Data collection		Os(3) - C(8)	1.94 (5)	C(8)—O(8)	1.15 (6)
		Os(3) - C(9)	1.88 (4)	C(9)—O(9)	1.24 (5)
Stoe Stadi-2 two-circle	1056 observed reflections	Os(3) - C(10)	1.90 (4)	C(10)—O(10)	1.15 (5)
diffractometer	$[F > b\sigma(F)]$	Os(2) - Os(1) - Os(3)	57.92 (6)	Os(1) - Os(3) - C(9)	86.2 (12)
ω scans	$\theta_{\rm max} = 25^{\circ}$	Os(2) - Os(1) - P(1)	111.2 (5)	Os(1) - Os(3) - C(10)	87.0 (11)
Absorption correction:	$h = 0 \rightarrow 19$	Os(2) - Os(1) - C(1)	87.2 (14)	Os(2) - Os(3) - C(7)	105.7 (13)
empirical	$k = 0 \rightarrow 15$	Os(2) - Os(1) - C(2)	146.8 (12)	Os(2) - Os(3) - C(8)	156.2 (15)
T = 0.02 $T = 1.11$	$l = 0 \rightarrow 12$	Os(2) - Os(1) - C(3)	87.6 (13)	Os(2) - Os(3) - C(9)	78.9 (12)
$I_{\rm min} = 0.93, I_{\rm max} = 1.11$	$1 = 0 \rightarrow 12$	Os(3) - Os(1) - P(1)	169.1 (5)	Os(2) = Os(3) = C(10)	86.2 (11)
1997 measured reflections	No standard reflections	Os(3) - Os(1) - C(1)	90.8 (14)	C(7) = Os(3) = C(8)	98.1 (19)
1997 independent reflections		Os(3) - Os(1) - C(2)	89.0 (12)	C(7) = Os(3) = C(9)	93.2 (17)
		Os(3) - Os(1) - C(3)	91.2 (13)	C(7) - Os(3) - C(10)	90.9 (17)
		P(1) - Os(1) - C(1)	87.5 (15)	C(8) = Os(3) = C(9)	97.9 (19)
		P(1) = Os(1) = C(2)	101.8 (13)	C(8) = Os(3) = C(10)	95.7 (18)
Refinement		P(1) = Os(1) = C(3)	89.2 (14)	C(9) = Os(3) = C(10)	105.1 (10)
	$1/(-2/(D) + 0.000420E^2)$	C(1) = Os(1) = C(2)	91.4 (19)	$O_{S}(1) = P(1) = C(11)$	118.3 (17)
Refinement on F	$w = 1/[\sigma^{-}(F) + 0.000429F]$	C(1) = Os(1) = C(3)	1/2(2)	C(11) = P(1) = C(12)	120(2)
R = 0.0444	$(\Delta/\sigma)_{\rm max} = 0.02$	C(2) = Os(1) = C(3)	90.1 (18) 50.00 (6)	C(11) = F(1) = C(12)	121 (3)
wR = 0.0477	$\Delta \rho_{max} = 1.13 \text{ e} \text{ Å}^{-3}$	$O_{S}(1) = O_{S}(2) = O_{S}(3)$	143 D (14)	$O_{S}(1) = P(1) = C(12')$	121(3)
S = 1.106	$\Delta_{a} = 0.07 a h^{-3}$	$O_{S}(1) = O_{S}(2) = C(4)$ $O_{S}(1) = O_{S}(2) = C(5)$	143.0(14)	C(11') = P(1) = C(12')	110(3)
1056 0 them	$\Delta p_{\rm min} = -0.97 {\rm e A}$	$O_{S}(1) = O_{S}(2) = C(3)$ $O_{S}(1) = O_{S}(2) = C(6)$	995(14)	$O_{S}(1) = C(1) = O(1)$	174 (4)
1056 reflections	Atomic scattering factors	$O_{S}(1) = O_{S}(2) = C(0)$ $O_{S}(3) = O_{S}(2) = C(4)$	85.6 (14)	$O_{S}(1) = C(1) = O(1)$	174 (4)
128 parameters	from Cromer & Mann	$O_{S}(3) = O_{S}(2) = C(4)$ $O_{S}(3) = O_{S}(2) = C(5)$	166.6 (11)	$O_{S(1)} = C(2) = O(2)$	169 (4)
H atoms not located	(1968) or inlaid	$O_{S}(3) = O_{S}(2) = C(5)$ $O_{S}(3) = O_{S}(2) = C(6)$	92 4 (14)	$O_{S}(2) - C(4) - O(4)$	171 (4)
		C(4) = Os(2) = C(5)	100.3 (18)	Os(2) - C(5) - O(5)	174 (3)
		$C(4) \rightarrow Os(2) \rightarrow C(6)$	92 (2)	$O_{S}(2) - C(6) - O(6)$	166 (4)
		C(5) - Os(2) - C(6)	99.4 (18)	$O_{s(3)} - C(7) - O(7)$	170 (4)
		Os(1) - Os(3) - Os(2)	62.99 (6)	Os(3) - C(8) - O(8)	179 (4)
Table 1. Fractional atomic	coordinates and isotropic or	Os(1) - Os(3) - C(7)	168.5 (13)	$O_{s(3)} - C(9) - O(9)$	164 (3)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for (1)

 $U_{\text{eq}} = (1/3)\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ for Os atoms.

Compound (2)

Os(1) - Os(3) - C(7)

Os(1)-Os(3)-C(8)

168.5 (13)

93.3 (15)

	×	v	7	Unillia	Compound (2)	
$O_{\rm e}(1)$	-0 10477 (8)	-0.0039(2)	-0.50385(16)	0.0589(8)	Crystal data	
Os(1)	-0.27201(8)	0.0037(2)	-0.50765(19)	0.0606 (9)		
$O_{S}(2)$	-0.20953(8)	01	-0.74705(19)	0.0569 (7)	$[Os_3(C_2H_6P)H(CO)_{10}]$	Mo K α
P(1)	-0.0424(8)	0.0082 (19)	-0.2897 (14)	0.109 (4)	$M_r = 912.7$	$\lambda = 0.7$
Cub	0.049 (3)	-0.078(4)	-0.252 (5)	0.042 (8)	Monoclinic	Cell par
C(12)	-0.047(4)	0.115 (6)	-0.180(6)	0.084 (9)		reflec
C(11')	-0.093 (6)	0.078 (7)	-0.152(8)	0.091 (9)	$P2_1/c$	
C(12')	0.011 (5)	-0.097 (6)	-0.225(7)	0.064 (9)	a = 8.860 (3) A	$\theta = 7 - 9$
C(I)	-0.163(3)	-0.124(4)	-0.437 (5)	0.100 (8)	b = 16.408 (11) Å	$\mu = 19.$
O(I)	-0.1938 (19)	-0.206 (3)	-0.400 (4)	0.109 (7)	c = 13.779 (11) Å	T = 298
C(2)	-0.028 (2)	-0.086 (3)	-0.600 (4)	0.068 (7)	a = 103.40 (6)°	Lath
O(2)	0.0264 (18)	-0.127 (3)	-0.650 (3)	0.098 (7)	$\beta = 103.40(0)$	0.86 ×
C(3)	-0.055 (3)	0.127 (4)	-0.553 (4)	0.089 (8)	$V = 1949 \text{ A}^3$	0.00 ^
O(3)	-0.0145 (17)	0.194 (3)	-0.582 (3)	0.084 (6)	Z = 4	Dагк ге
C(4)	-0.374 (3)	0.110 (4)	-0.603 (4)	0.093 (8)	$D_{\rm r} = 3.111 {\rm Mg}{\rm m}^{-3}$	
O(4)	-0.444 (2)	0.116 (4)	-0.646 (4)	0.134 (8)	21 0000 008	
C(5)	-0.3054 (19)	0.139 (3)	-0.340 (4)	0.055 (7)	D . II day	
O(5)	-0.3311 (17)	0.171 (2)	-0.233 (3)	0.095 (7)	Data collection	
C(6)	-0.238 (3)	0.236 (4)	-0.575 (5)	0.090 (8)	Stoe Stadi-4 four-circle	2106 o
O(6)	-0.210 (2)	0.320 (3)	-0.588 (4)	0.113 (7)	diffractometer	$ F\rangle$
C(7)	-0.291 (3)	0.021 (4)	-0.885 (4)	0.080 (7)		
O(7)	-0.345 (2)	0.043 (3)	-0.954 (3)	0.107 (7)	ω -20 scans	Omax -
C(8)	-0.133 (3)	-0.085 (4)	-0.852 (5)	0.099 (8)	Absorption correction:	h = -9
O(8)	-0.089 (2)	-0.137 (3)	-0.916 (4)	0.110 (7)	semi-empirical	k = 0 -
C(9)	-0.271 (2)	-0.106 (3)	-0.663 (4)	0.066 (7)	$T_{1} = 0.007 T_{2} =$	l = 0 -
O(9)	-0.3187 (18)	-0.180 (3)	-0.640 (3)	0.097 (7)	$I_{min} = 0.007, I_{max} = 0.007$	3 stand
C(10)	-0.157 (2)	0.127 (3)	-0.791 (4)	0.066(7)	0.055	
O(10)	-0.1267 (18)	0.200 (2)	-0.837 (3)	0.081 (6)	2646 measured reflections	trequ

† Coordinate fixed to define origin.

2646 independent reflections

radiation '1073 Å rameters from 16 ctions ٩° $.67 \text{ mm}^{-1}$ 8 K $0.44~\times~0.35~mm$ d

Os(3)-C(9)-O(9)

OS(3)-C(10)-O(10)

170 (3)

bserved reflections $6\sigma(F)$] 22.5°) → 9 → 17 → 14 lard reflections uency: 120 min intensity variation: 2%

Refinement

5	
Refinement on F	$w = 1/[\sigma^2(F) + 0.0071F^2]$
R = 0.0376	$(\Delta/\sigma)_{\rm max} = 0.08$
wR = 0.0524	$\Delta \rho_{\rm max} = 1.19 \ {\rm e} \ {\rm \AA}^{-3}$
S = 0.620	$\Delta \rho_{\rm min} = -2.85 \ {\rm e} \ {\rm \AA}^{-3}$
2106 reflections	Atomic scattering factors
175 parameters	from Cromer & Mann
H atoms not located	(1968) or inlaid

Table 3. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for (2)

 $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ for Os, P and O atoms.

	x	у	z	Uiso/Uen
Os(1)	0.14457 (6)	0.0293 (3)	0.31289 (3)	0.0383 (4)
Os(2)	0.32001 (6)	0.05959 (3)	0.16385 (3)	0.0365 (4)
Os(3)	0.11790 (6)	0.18474 (3)	0.21506 (4)	0.0404 (4)
P(1)	0.3913 (4)	0.18638 (19)	0.2419 (3)	0.048 (2)
C(11)	-0.0176 (18)	-0.0075 (9)	0.1969 (11)	0.055 (3)
C(12)	0.206 (2)	-0.0816(11)	0.3517 (12)	0.066 (4)
C(13)	0.3052 (19)	0.0664 (9)	0.4214 (12)	0.061 (4)
C(14)	-0.0152 (16)	0.0494 (7)	0.3841 (10)	0.047 (3)
C(21)	0.222 (2)	-0.0386 (10)	0.0978 (13)	0.069 (4)
C(22)	0.4942 (16)	0.0025 (8)	0.2307 (10)	0.050 (3)
C(23)	0.3996 (16)	0.0875 (8)	0.0527 (11)	0.050 (3)
C(31)	-0.098 (2)	0.1594 (10)	0.1737 (12)	0.071 (4)
C(32)	0.1060 (18)	0.2369 (9)	0.3337 (11)	0.057 (4)
C(33)	0.1101 (19)	0.2817 (10)	0.1388 (12)	0.065 (4)
C(1p)	0.462 (2)	0.2617 (10)	0.1618 (12)	0.070 (4)
C(2p)	0.530 (3)	0.2008 (11)	0.3627 (15)	0.087 (5)
O(11)	-0.1097 (13)	-0.0320 (7)	0.1386 (8)	0.080 (8)
O(12)	0.2408 (16)	-0.1469 (7)	0.3723 (12)	0.101 (10)
O(13)	0.393 (2)	0.0856 (9)	0.4929 (9)	0.109 (11)
O(14)	-0.1111 (12)	0.0617 (7)	0.4237 (8)	0.075 (7)
O(21)	0.1745 (17)	-0.0978 (8)	0.0585 (10)	0.105 (10)
O(22)	0.6062 (15)	-0.0307 (7)	0.2745 (10)	0.087 (9)
O(23)	0.4471 (15)	0.1036 (7)	-0.0167 (9)	0.086 (9)
0(31)	-0.2298 (15)	0.1478 (8)	0.1467 (11)	0.099 (10)
O(32)	0.103 (3)	0.2737 (7)	0.4025 (10)	0.121 (12)
O(33)	0.1015 (15)	0.3400 (7)	0.0894 (10)	0.0961 (9)

Table 4. Geometric parameters (Å, °) for (2)

Os(1) - Os(2)	2.8916 (7)	Os(3) - C(31)	1.913 (18)
Os(1)Os(3)	2.8698 (7)	Os(3) - C(32)	1.870 (15)
Os(2)Os(3)	2.9166 (7)	Os(3) - C(33)	1.899 (16)
Os(2) - P(1)	2.360 (4)	$\mathbf{C}(\mathbf{H}) = \mathbf{O}(\mathbf{H})$	1.080 (19)
Os(3) - P(1)	2.365 (4)	C(12) - O(12)	1.13 (2)
P(1) - C(1p)	1.858 (17)	C(13) - O(13)	1.15 (2)
P(1)-C(2p)	1.84 (2)	C(14) - O(14)	1.129 (17)
Os(1) - C(11)	1.980(15)	C(21) = O(21)	1 14 (2)
Os(1) - C(12)	1.938 (17)	C(22) - O(22)	1 170 (19)
Os(1) - C(13)	1.909 (16)	C(23) - O(23)	1.161 (19)
Os(1)C(14)	1.929 (14)	C(31) = O(31)	1.16(2)
Os(2) - C(21)	1.954 (18)	C(32) = O(32)	1 13 (2)
Os(2) - C(22)	1.857 (14)	C(33) - O(33)	1.17(2)
Os(2)—C(23)	1.884 (14)	-()	
Os(1) - Os(2) - Os(3)	59.219 (17)	C(12) - Os(1) - C(14)	102.2 (7)
Os(1) - Os(3) - Os(2)	59.955 (17)	C(13) - Os(1) - C(14)	92.8 (6)
Os(2) - Os(1) - Os(3)	60.826 (17)	Os(1) - Os(2) - C(21)	86.1 (5)
Os(1) - Os(2) - P(1)	87.68 (9)	$O_{s(1)} - O_{s(2)} - C(22)$	94.7 (4)
Os(3) - Os(2) - P(1)	51.96 (9)	$O_{s(1)} - O_{s(2)} - C(23)$	169.4 (4)
Os(1) - Os(3) - P(1)	88.10 (9)	$O_{s(3)} - O_{s(2)} - C(21)$	117.4 (5)
Os(2) - Os(3) - P(1)	51.80 (9)	$O_{s(3)} - O_{s(2)} - C(22)$	136.2 (4)
Os(2) - P(1) - Os(3)	76.24 (11)	Os(3) - Os(2) - C(23)	113.1 (4)
Os(2) - P(1) - C(1p)	114.0 (5)	C(21) - Os(2) - C(22)	92.6 (7)
Os(2) - P(1) - C(2p)	125.3 (7)	C(21) - Os(2) - C(23)	91.9 (7)
Os(3) - P(1) - C(1p)	112.8 (5)	C(22) - Os(2) - C(23)	95.8 (6)
Os(3) - P(1) - C(2p)	125.9 (7)	Os(1) - Os(3) - C(31)	85.1 (5)
C(1P) - P(1) - C(2p)	102.0 (8)	Os(1) - Os(3) - C(32)	90.7 (5)
P(1) - Os(2) - C(21)	169.3 (5)	Os(1) - Os(3) - C(33)	173.3 (5)
P(1) - Os(2) - C(22)	96.6 (4)	Os(2) - Os(3) - C(31)	113.8 (5)
			. /

P(1) - Os(2) - C(23)	92.6 (4)	Os(2) - Os(3) - C(32)	134.1 (5)
P(1) - Os(3) - C(31)	165.4 (5)	Os(2) - Os(3) - C(33)	113.7 (5)
P(1) - Os(3) - C(32)	97.0 (5)	C(31) - Os(3) - C(32)	96.0 (7)
P(1) - Os(3) - C(33)	88.9 (5)	C(31) - Os(3) - C(33)	96.5 (7)
Os(2) - Os(1) - C(11)	83.6 (4)	C(32) - Os(3) - C(33)	95.6 (7)
Os(2) - Os(1) - C(12)	101.3 (5)	$O_{s(1)} - C(11) - O(11)$	174.1 (14)
Os(2) - Os(1) - C(13)	94.3 (5)	$O_{s(1)} - C(12) - O(12)$	178.6 (16)
Os(2) - Os(1) - C(14)	155.6 (4)	Os(1) - C(13) - O(13)	173.2 (15)
Os(3) - Os(1) - C(11)	85.8 (4)	$O_{s(1)} - C(14) - O(14)$	178.4 (12)
Os(3) - Os(1) - C(12)	162.1 (5)	$O_{s(2)} - C(21) - O(21)$	174.9 (16)
Os(3) - Os(1) - C(13)	92.8 (5)	$O_{s(2)} - C(22) - O(22)$	177.5 (13)
Os(3) - Os(1) - C(14)	95.5 (4)	Os(2) - C(23) - O(23)	178.8 (13)
C(11) - Os(1) - C(12)	92.4 (7)	$O_{s(3)} - C(31) - O(31)$	176.7 (16)
C(11) - Os(1) - C(13)	177.8 (7)	$O_{s(3)} - C(32) - O(32)$	174.6 (15)
C(11) - Os(1) - C(14)	89.0 (6)	$O_{s(3)} - C(33) - O(33)$	177.6 (15)
C(12) - Os(1) - C(13)	88.5 (7)		

Mo $K\alpha$ radiation $\lambda = 0.71073$ Å Cell parameters from 18

reflections $\theta = 3 - 21^{\circ}$ $\mu = 21.73 \text{ mm}^{-1}$ T = 298 KSphenoid

Dark red

 $0.38 \times 0.32 \times 0.04$ mm

Compound (3)

Crystal data

$[O_{s_3}(CH_3P)(H)_2(CO)_0]$
$M_{\rm r} = 870.7$
Orthorhombic
Pcab
a = 17.109(4)
a = 17.108 (4) A
D = 14.229 (4) A
c = 14.485 (9) A
$V = 3526 \text{ A}^3$
Z = 8
$D_x = 3.280 \text{ Mg m}^{-3}$

Data collection

Stoe Stadi-2 two-circle	1989 observed reflections
diffractometer	$[F > 6\sigma(F)]$
ω scans	$\theta_{\rm max} = 25^{\circ}$
Absorption correction:	$h = 0 \rightarrow 20$
empirical	$k = 0 \rightarrow 16$
$T_{\rm min}$ = 0.010, $T_{\rm max}$ =	$l = 0 \rightarrow 16$
0.125	2 standard reflections
3296 measured reflections	frequency: 720 min
3296 independent reflections	intensity variation: none

Refinement

 $\begin{array}{c} Os(1) \\ Os(2) \\ Os(3) \\ P(1) \\ C(11) \\ C(12) \\ C(13) \\ C(21) \\ C(22) \\ C(23) \\ C(31) \end{array}$

Refinement on F	$w = 1/[\sigma^2(F) + 0.0008F^2]$
R = 0.0430	$(\Delta/\sigma)_{\rm max} = 0.02$
wR = 0.0526	$\Delta \rho_{\rm max} = 1.38 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.076	$\Delta \rho_{\rm min} = -1.46 \ {\rm e} \ {\rm \AA}^{-3}$
1989 reflections	Atomic scattering factors
113 parameters	from Cromer & Mann
H atoms not located	(1968) or inlaid

Table 5. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$ for (3)

 $U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$ for Os and P atoms.

x	у	z	$U_{\rm iso}/U_{\rm eq}$
0.20009 (4)	0.3583 (6)	0.09192 (5)	0.0456 (4)
0.07061 (4)	0.23264 (6)	0.03212 (5)	0.0429 (4)
0.04690 (4)	0.35109 (6)	0.18870 (5)	0.0455 (4)
0.1393 (3)	0.2336 (4)	0.1700 (4)	0.049 (3)
0.2600 (12)	0.3979 (18)	0.1928 (16)	0.069 (6)
0.2175 (13)	0.4668 (20)	0.0158 (18)	0.074 (7)
0.2825 (13)	0.2839 (18)	0.0474 (16)	0.069 (6)
-0.0060 (11)	0.1412 (15)	0.0690 (14)	0.051 (5)
0.0022 (12)	0.3003 (17)	-0.0493 (16)	0.066 (6)
0.1193 (11)	0.1534 (16)	-0.0524 (14)	0.056 (5)
-0.0344 (10)	0.2795 (15)	0.2301 (14)	0.054 (5)

C(32)	-0.0218(12)	0.4371 (18)	0.1349 (17)	0.071 (6)
C(33)	0.0679 (12)	0.4047 (19)	0.3034 (17)	0.075 (7)
C(1p)	0.1855 (12)	0.1464 (18)	0.2451 (18)	0.076 (6)
O(11)	0.2938 (9)	0.4291 (14)	0.2571 (13)	0.094 (5)
O(12)	0.2299 (10)	0.5268 (14)	0.0338 (13)	0.094 (5)
O(13)	0.3335 (10)	0.2404 (14)	0.0169 (13)	0.095 (6)
O(21)	-0.0521 (9)	0.0903 (14)	0.0874 (12)	0.085 (5)
O(22)	-0.0411 (9)	0.3444 (12)	-0.0931 (12)	0.080 (5)
O(23)	0.1494 (9)	0.1025 (13)	-0.1042 (12)	0.084 (5)
O(31)	-0.0902 (9)	0.2345 (14)	0.2526 (13)	0.095 (5)
O(32)	-0.0628 (10)	0.4918 (15)	0.0946 (14)	0.102 (6)
0(33)	0.0874 (10)	0.4390 (14)	0.3750(14)	0.097 (5)

Table 6. Geometric parameters $(Å, \circ)$ for (3)

Os(1) - Os(2)	2.9776 (11)	Os(3) - C(31)	1.83 (2)
Os(1) - Os(3)	2.9741 (11)	Os(3)C(32)	1.87 (2)
Os(2) - Os(3)	2.8547 (11)	Os(3)-C(33)	1.86 (3)
Os(1) - P(1)	2.350 (5)	C(11)-O(11)	1.18 (3)
Os(2) - P(1)	2.318 (5)	C(12)-O(12)	1.14 (3)
Os(3) - P(1)	2.317 (5)	C(13)-O(13)	1.16 (3)
P(1) - C(1p)	1.83 (3)	C(21)-O(21)	1.10(3)
$O_{S}(1) - C(11)$	1.87 (2)	C(22)O(22)	1.16 (3)
Os(1) - C(12)	1.92 (3)	C(23)-O(23)	1.16(3)
$O_{S(1)} - C(13)$	1.88 (2)	C(31)-O(31)	1.19 (3)
$O_{S}(2) - C(21)$	1.92 (2)	C(32)-O(32)	1.20 (3)
$O_{s(2)} - C(22)$	1.92 (2)	C(33)-O(33)	1.19 (3)
Os(2)-C(23)	1.86 (2)		
Os(2) - Os(1) - Os(3)	57.33 (3)	Os(1)-Os(2)-C(21)	146.5 (6)
Os(1) - Os(2) - Os(3)	61.28 (3)	Os(1) - Os(2) - C(22)	109.3 (7)
Os(1) - Os(3) - Os(2)	61.40(3)	Os(1) - Os(2) - C(23)	102.9 (6)
Os(2) - Os(1) - P(1)	49.89 (13)	Os(3) - Os(2) - C(21)	94.7 (6)
Os(3) - Os(1) - P(1)	49.92 (13)	Os(3) - Os(2) - C(22)	96.0 (7)
Os(1) - Os(2) - P(1)	50.84 (13)	Os(3) - Os(2) - C(23)	160.7 (6)
Os(3) - Os(2) - P(1)	51.96 (13)	Os(1) - Os(3) - C(31)	147.8 (6)
Os(1) - Os(3) - P(1)	50.90 (13)	Os(1) - Os(3) - C(32)	109.5 (7)
Os(2) - Os(3) - P(1)	52.00 (13)	Os(1) - Os(3) - C(33)	103.70 (8)
Os(1) - P(1) - Os(2)	79.27 (17)	Os(2) - Os(3) - C(31)	92.3 (6)
Os(1) - P(1) - Os(3)	79.18 (17)	Os(2) - Os(3) - C(32)	98.3 (7)
Os(1) - P(1) - C(1p)	127.5 (8)	Os(2) - Os(3) - C(33)	157.3 (8)
Os(2) - P(1) - Os(3)	76.04 (16)	C(11) - Os(1) - C(12)	97.1 (10)
Os(2) - P(1) - C(1p)	136.7 (8)	C(11) - Os(1) - C(13)	91.5 (10)
Os(3) - P(1) - C(1p)	135.6 (8)	C(12) - Os(1) - C(13)	98.0 (10)
P(1) - Os(1) - C(11)	95.3 (7)	C(21) - Os(2) - C(22)	95.4 (9)
P(1) - Os(1) - C(12)	162.4 (8)	C(21) - Os(2) - C(23)	94.5 (9)
P(1) - Os(1) - C(13)	94.0(7)	C(22) - Os(2) - C(23)	100.0 (9)
P(1) - Os(2) - C(22)	146.7 (7)	C(31) - Os(3) - C(32)	91.4 (10)
P(1) - Os(2) - C(23)	110.1 (7)	C(31) - Os(3) - C(33)	94.7 (10)
P(1) - Os(2) - C(21)	96.3 (6)	C(32) - Os(3) - C(33)	103.0 (11)
P(1) - Os(3) - C(31)	98.9 (6)	Os(1) - C(11) - O(11)	175 (2)
P(1) - Os(3) - C(32)	148.6 (7)	Os(1) - C(12) - O(12)	175 (2)
P(1) - Os(3) - C(33)	105.5 (8)	Os(1) - C(13) - O(13)	177 (2)
Os(2) - Os(1) - C(11)	144.6 (7)	Os(2) - C(21) - O(21)	177.0 (19)
$O_{s(2)} - O_{s(1)} - C(12)$	115.6 (8)	Os(2) - C(22) - O(22)	175 (2)
Os(2) - Os(1) - C(13)	96.8 (7)	Os(2)C(23)O(23)	178.8 (19)
Os(3) - Os(1) - C(11)	97.2 (7)	Os(3) - C(31) - O(31)	175.9 (18)
Os(3) - Os(1) - C(12)	115.9 (8)	Os(3) - C(32) - O(32)	175 (2)
Os(3) - Os(1) - C(13)	143.4 (7)	Os(3) - C(33) - O(33)	175 (2)

The structure of (1) was solved by direct methods using *SHELXS84* (Sheldrick, 1984). The methyl groups of the phosphine were each found to be disordered over two sites, such that the occupancy of C(11) and C(12) refined to 0.606 (9) and that of the alternative positions represented by C(11') and C(12') to 0.394 (9). Only the Os atoms were allowed anisotropic thermal motion. The absolute structure was determined and is presented here; the other polarity gave higher residuals *R* and *wR* of 0.0450 and 0.0493, respectively, and higher errors in atomic positional and displacement parameters. The structures of compounds (2) and (3) were solved similarly. The atoms allowed anisotropic thermal motion were Os, P and O for (2) and Os and P for (3). The programs used were *SHELX76* (Sheldrick, 1976) and *SHELXS86* (Sheldrick, 1985). *CALC* (Gould & Taylor, 1985) was used for molecular geometry calculations.

We thank the SERC for support, Johnson Matthey PLC for loans of platinum group metals and the Royal Society of Edinburgh and the Scottish Office Education Department for a Research Support Fellowship (to MS).

Lists of structure factors and anisotropic displacement parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 71506 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HU1044]

References

- Bruce, M. I., Guss, J. M., Mason, R., Skelton, B. W. & White, A. H. (1983). J. Organomet. Chem. 251, 261–271.
- Carty, A. J., Cherkas, A. A., Nucciarone, D., Patel, V. D. & Taylor, N. J. (1985). Organometallics, 4, 1792–1800.
- Carty, A. J., Cherkas, A. A. & Taylor, N. J. (1990). J. Chem. Soc. Chem. Commun. pp. 385-387.
- Colbran, S. B., Johnson, B. F. G., Lewis, J. & Sorrell, R. M. (1985). J. Organomet. Chem. 296, C1 C5.
- Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.
- Day, M. W., Deeming, A. J., Doherty, S., Hardcastle, K. I. & Minassian, H. (1991). J. Chem. Soc. Dalton Trans. pp. 1273– 1279.
- Ebsworth, E. A. V., McIntosh, A. P. & Schröder, M. (1986). J. Organomet. Chem. **312**, C41–C43.
- Gould, R. O. & Taylor, P. (1985). CALC. Program for Molecular Geometry Calculations. Univ. of Edinburgh, Scotland.
- Huttner, G., Natarajan, K. & Zsolnai, L. (1981). J. Organomet. Chem. 220, 365-381.
- Iwasaki, F., Mays, M. J., Raithby, P. R., Taylor, P. L. & Wheatley, P. J. (1981). J. Organomet. Chem. 213, 185-206.
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. Univ. of Cambridge, England.
- Sheldrick, G. M. (1984). SHELXS84. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1986). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1994). C50, 375-377

Tetra-*n*-butylammonium Tris(perfluorophenyl)(triphenylphosphine)platinate(II)

IRENE ARA AND MILAGROS TOMÁS*

Departamento de Química Inorgánica. Instituto de Ciencia de Materiales de Aragón, Univesidad de Zaragoza-CSIC, 50009 Zaragoza, Spain

(Received 29 January 1993; accepted 16 August 1993)

Abstract

The coordination geometry of the ligands around the Pt atom is approximately square planar in $[N(C_4H_9)_4][Pt(C_6F_5)_3(C_{18}H_{15}P)]$, with Pt—C dis-